Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4

Identifieur interne : 000112 ( PascalFrancis/Corpus ); précédent : 000111; suivant : 000113

Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4

Auteurs : G. G. Pfister ; L. K. Emmons ; P. G. Hess ; J.-F. Lamarque ; J. J. Orlando ; S. Walters ; A. Guenther ; P. I. Palmer ; P. J. Lawrence

Source :

RBID : Pascal:08-0208587

Descripteurs français

English descriptors

Abstract

[1] We present a study of the sensitivity of isoprene emission calculations in a global chemistry transport model (CTM) to input land cover characteristics and analyze the impacts of changes in isoprene on the tropospheric budgets of atmospheric key species. The CTM Model for Ozone and Related Chemical Species, version 4 (MOZART-4) includes the online calculation of isoprene emissions based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is driven by three different land parameter inputs. We also included a tagging scheme in the CTM, which keeps track of the production of carbon containing species from isoprene oxidation. It is found that the amount of tropospheric carbon monoxide (CO), formaldehyde (HCHO) and peroxyacetylnitrate (PAN) explained by isoprene oxidation ranges from 9-16%, 15-27%, and 22-32%, depending on the isoprene emissions scenario. Changes in the global tropospheric burden with different land cover inputs can reach up to 10% for CO, 15% for HCHO, and 20% for PAN. Changes for ozone are small on a global scale, but regionally differences are as large as 3DU in the tropospheric column and as large as 5 ppbv in the surface concentrations. Our results demonstrate that a careful integration of isoprene emissions and chemistry in CTMs is very important for simulating the budgets of a number of atmospheric trace gases. We further demonstrate that the model tagging scheme has the capability of improving conventional methods of constraining isoprene emissions from space-borne HCHO column observations, especially in regions where a considerable part of the variability in the HCHO column is not related to isoprene.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 113
A06       @2 D5
A08 01  1  ENG  @1 Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4
A11 01  1    @1 PFISTER (G. G.)
A11 02  1    @1 EMMONS (L. K.)
A11 03  1    @1 HESS (P. G.)
A11 04  1    @1 LAMARQUE (J.-F.)
A11 05  1    @1 ORLANDO (J. J.)
A11 06  1    @1 WALTERS (S.)
A11 07  1    @1 GUENTHER (A.)
A11 08  1    @1 PALMER (P. I.)
A11 09  1    @1 LAWRENCE (P. J.)
A14 01      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A14 02      @1 School of GeoSciences, University of Edinburgh @2 Edinburgh @3 GBR @Z 8 aut.
A14 03      @1 Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado @2 Boulder, Colorado @3 USA @Z 9 aut.
A20       @2 D05308.1-D05308.21
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000183022170370
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 08-0208587
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] We present a study of the sensitivity of isoprene emission calculations in a global chemistry transport model (CTM) to input land cover characteristics and analyze the impacts of changes in isoprene on the tropospheric budgets of atmospheric key species. The CTM Model for Ozone and Related Chemical Species, version 4 (MOZART-4) includes the online calculation of isoprene emissions based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is driven by three different land parameter inputs. We also included a tagging scheme in the CTM, which keeps track of the production of carbon containing species from isoprene oxidation. It is found that the amount of tropospheric carbon monoxide (CO), formaldehyde (HCHO) and peroxyacetylnitrate (PAN) explained by isoprene oxidation ranges from 9-16%, 15-27%, and 22-32%, depending on the isoprene emissions scenario. Changes in the global tropospheric burden with different land cover inputs can reach up to 10% for CO, 15% for HCHO, and 20% for PAN. Changes for ozone are small on a global scale, but regionally differences are as large as 3DU in the tropospheric column and as large as 5 ppbv in the surface concentrations. Our results demonstrate that a careful integration of isoprene emissions and chemistry in CTMs is very important for simulating the budgets of a number of atmospheric trace gases. We further demonstrate that the model tagging scheme has the capability of improving conventional methods of constraining isoprene emissions from space-borne HCHO column observations, especially in regions where a considerable part of the variability in the HCHO column is not related to isoprene.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  X  FRE  @0 Isoprène @2 NK @5 01
C03 01  X  ENG  @0 Isoprene @2 NK @5 01
C03 01  X  SPA  @0 Isopreno @2 NK @5 01
C03 02  2  FRE  @0 Modèle @5 02
C03 02  2  ENG  @0 models @5 02
C03 02  2  SPA  @0 Modelo @5 02
C03 03  2  FRE  @0 Traceur @5 03
C03 03  2  ENG  @0 tracers @5 03
C03 03  2  SPA  @0 Trazador @5 03
C03 04  2  FRE  @0 Analyse sensibilité @5 04
C03 04  2  ENG  @0 sensitivity analysis @5 04
C03 05  2  FRE  @0 Monde @5 05
C03 05  2  ENG  @0 global @5 05
C03 05  2  SPA  @0 Mundo @5 05
C03 06  2  FRE  @0 Transport @5 06
C03 06  2  ENG  @0 transport @5 06
C03 06  2  SPA  @0 Transporte @5 06
C03 07  2  FRE  @0 Occupation sol @5 07
C03 07  2  ENG  @0 land cover @5 07
C03 08  2  FRE  @0 Troposphère @5 08
C03 08  2  ENG  @0 troposphere @5 08
C03 09  2  FRE  @0 Ozone @5 09
C03 09  2  ENG  @0 ozone @5 09
C03 09  2  SPA  @0 Ozono @5 09
C03 10  2  FRE  @0 Gaz @5 10
C03 10  2  ENG  @0 gases @5 10
C03 10  2  SPA  @0 Gas @5 10
C03 11  2  FRE  @0 Aérosol @5 11
C03 11  2  ENG  @0 aerosols @5 11
C03 11  2  SPA  @0 Aerosol @5 11
C03 12  2  FRE  @0 Trajectoire @5 12
C03 12  2  ENG  @0 trajectory @5 12
C03 13  2  FRE  @0 Carbone @5 13
C03 13  2  ENG  @0 carbon @5 13
C03 13  2  SPA  @0 Carbono @5 13
C03 14  2  FRE  @0 Oxydation @5 14
C03 14  2  ENG  @0 oxidation @5 14
C03 14  2  SPA  @0 Oxidación @5 14
C03 15  2  FRE  @0 Monoxyde carbone @5 15
C03 15  2  ENG  @0 carbon monoxide @5 15
C03 16  X  FRE  @0 Monoxyde de carbone @2 NK @2 FX @5 16
C03 16  X  ENG  @0 Carbon monoxide @2 NK @2 FX @5 16
C03 16  X  SPA  @0 Carbono monóxido @2 NK @2 FX @5 16
C03 17  X  FRE  @0 Formaldéhyde @2 NK @2 FX @5 17
C03 17  X  ENG  @0 Formaldehyde @2 NK @2 FX @5 17
C03 17  X  SPA  @0 Formaldehído @2 NK @2 FX @5 17
C03 18  3  FRE  @0 Peracétique acide nitrate @2 NK @5 18
C03 18  3  ENG  @0 Peroxyacetyl nitrate @2 NK @5 18
C03 19  X  FRE  @0 Pan @2 NO @5 19
C03 19  X  ENG  @0 Pan @2 NO @5 19
C03 19  X  SPA  @0 Pan @2 NO @5 19
C03 20  X  FRE  @0 Echelle planétaire @5 20
C03 20  X  ENG  @0 Planetary scale @5 20
C03 20  X  SPA  @0 Escala planetaria @5 20
C03 21  2  FRE  @0 Concentration @5 21
C03 21  2  ENG  @0 concentration @5 21
C03 21  2  SPA  @0 Concentración @5 21
C03 22  X  FRE  @0 Composé trace @5 22
C03 22  X  ENG  @0 Trace compound @5 22
C03 22  X  SPA  @0 Compuesto huella @5 22
C03 23  2  FRE  @0 Variabilité @5 23
C03 23  2  ENG  @0 variability @5 23
N21       @1 133
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 08-0208587 INIST
ET : Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4
AU : PFISTER (G. G.); EMMONS (L. K.); HESS (P. G.); LAMARQUE (J.-F.); ORLANDO (J. J.); WALTERS (S.); GUENTHER (A.); PALMER (P. I.); LAWRENCE (P. J.)
AF : National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut.); School of GeoSciences, University of Edinburgh/Edinburgh/Royaume-Uni (8 aut.); Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado/Boulder, Colorado/Etats-Unis (9 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2008; Vol. 113; No. D5; D05308.1-D05308.21; Bibl. 1 p.1/2
LA : Anglais
EA : [1] We present a study of the sensitivity of isoprene emission calculations in a global chemistry transport model (CTM) to input land cover characteristics and analyze the impacts of changes in isoprene on the tropospheric budgets of atmospheric key species. The CTM Model for Ozone and Related Chemical Species, version 4 (MOZART-4) includes the online calculation of isoprene emissions based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is driven by three different land parameter inputs. We also included a tagging scheme in the CTM, which keeps track of the production of carbon containing species from isoprene oxidation. It is found that the amount of tropospheric carbon monoxide (CO), formaldehyde (HCHO) and peroxyacetylnitrate (PAN) explained by isoprene oxidation ranges from 9-16%, 15-27%, and 22-32%, depending on the isoprene emissions scenario. Changes in the global tropospheric burden with different land cover inputs can reach up to 10% for CO, 15% for HCHO, and 20% for PAN. Changes for ozone are small on a global scale, but regionally differences are as large as 3DU in the tropospheric column and as large as 5 ppbv in the surface concentrations. Our results demonstrate that a careful integration of isoprene emissions and chemistry in CTMs is very important for simulating the budgets of a number of atmospheric trace gases. We further demonstrate that the model tagging scheme has the capability of improving conventional methods of constraining isoprene emissions from space-borne HCHO column observations, especially in regions where a considerable part of the variability in the HCHO column is not related to isoprene.
CC : 001E; 001E01; 220
FD : Isoprène; Modèle; Traceur; Analyse sensibilité; Monde; Transport; Occupation sol; Troposphère; Ozone; Gaz; Aérosol; Trajectoire; Carbone; Oxydation; Monoxyde carbone; Monoxyde de carbone; Formaldéhyde; Peracétique acide nitrate; Pan; Echelle planétaire; Concentration; Composé trace; Variabilité
ED : Isoprene; models; tracers; sensitivity analysis; global; transport; land cover; troposphere; ozone; gases; aerosols; trajectory; carbon; oxidation; carbon monoxide; Carbon monoxide; Formaldehyde; Peroxyacetyl nitrate; Pan; Planetary scale; concentration; Trace compound; variability
SD : Isopreno; Modelo; Trazador; Mundo; Transporte; Ozono; Gas; Aerosol; Carbono; Oxidación; Carbono monóxido; Formaldehído; Pan; Escala planetaria; Concentración; Compuesto huella
LO : INIST-3144.354000183022170370
ID : 08-0208587

Links to Exploration step

Pascal:08-0208587

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4</title>
<author>
<name sortKey="Pfister, G G" sort="Pfister, G G" uniqKey="Pfister G" first="G. G." last="Pfister">G. G. Pfister</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hess, P G" sort="Hess, P G" uniqKey="Hess P" first="P. G." last="Hess">P. G. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Orlando, J J" sort="Orlando, J J" uniqKey="Orlando J" first="J. J." last="Orlando">J. J. Orlando</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, S" sort="Walters, S" uniqKey="Walters S" first="S." last="Walters">S. Walters</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guenther, A" sort="Guenther, A" uniqKey="Guenther A" first="A." last="Guenther">A. Guenther</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Palmer, P I" sort="Palmer, P I" uniqKey="Palmer P" first="P. I." last="Palmer">P. I. Palmer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of GeoSciences, University of Edinburgh</s1>
<s2>Edinburgh</s2>
<s3>GBR</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, P J" sort="Lawrence, P J" uniqKey="Lawrence P" first="P. J." last="Lawrence">P. J. Lawrence</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0208587</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0208587 INIST</idno>
<idno type="RBID">Pascal:08-0208587</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4</title>
<author>
<name sortKey="Pfister, G G" sort="Pfister, G G" uniqKey="Pfister G" first="G. G." last="Pfister">G. G. Pfister</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hess, P G" sort="Hess, P G" uniqKey="Hess P" first="P. G." last="Hess">P. G. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Orlando, J J" sort="Orlando, J J" uniqKey="Orlando J" first="J. J." last="Orlando">J. J. Orlando</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, S" sort="Walters, S" uniqKey="Walters S" first="S." last="Walters">S. Walters</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guenther, A" sort="Guenther, A" uniqKey="Guenther A" first="A." last="Guenther">A. Guenther</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Palmer, P I" sort="Palmer, P I" uniqKey="Palmer P" first="P. I." last="Palmer">P. I. Palmer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of GeoSciences, University of Edinburgh</s1>
<s2>Edinburgh</s2>
<s3>GBR</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, P J" sort="Lawrence, P J" uniqKey="Lawrence P" first="P. J." last="Lawrence">P. J. Lawrence</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon monoxide</term>
<term>Formaldehyde</term>
<term>Isoprene</term>
<term>Pan</term>
<term>Peroxyacetyl nitrate</term>
<term>Planetary scale</term>
<term>Trace compound</term>
<term>aerosols</term>
<term>carbon</term>
<term>carbon monoxide</term>
<term>concentration</term>
<term>gases</term>
<term>global</term>
<term>land cover</term>
<term>models</term>
<term>oxidation</term>
<term>ozone</term>
<term>sensitivity analysis</term>
<term>tracers</term>
<term>trajectory</term>
<term>transport</term>
<term>troposphere</term>
<term>variability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Isoprène</term>
<term>Modèle</term>
<term>Traceur</term>
<term>Analyse sensibilité</term>
<term>Monde</term>
<term>Transport</term>
<term>Occupation sol</term>
<term>Troposphère</term>
<term>Ozone</term>
<term>Gaz</term>
<term>Aérosol</term>
<term>Trajectoire</term>
<term>Carbone</term>
<term>Oxydation</term>
<term>Monoxyde carbone</term>
<term>Monoxyde de carbone</term>
<term>Formaldéhyde</term>
<term>Peracétique acide nitrate</term>
<term>Pan</term>
<term>Echelle planétaire</term>
<term>Concentration</term>
<term>Composé trace</term>
<term>Variabilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] We present a study of the sensitivity of isoprene emission calculations in a global chemistry transport model (CTM) to input land cover characteristics and analyze the impacts of changes in isoprene on the tropospheric budgets of atmospheric key species. The CTM Model for Ozone and Related Chemical Species, version 4 (MOZART-4) includes the online calculation of isoprene emissions based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is driven by three different land parameter inputs. We also included a tagging scheme in the CTM, which keeps track of the production of carbon containing species from isoprene oxidation. It is found that the amount of tropospheric carbon monoxide (CO), formaldehyde (HCHO) and peroxyacetylnitrate (PAN) explained by isoprene oxidation ranges from 9-16%, 15-27%, and 22-32%, depending on the isoprene emissions scenario. Changes in the global tropospheric burden with different land cover inputs can reach up to 10% for CO, 15% for HCHO, and 20% for PAN. Changes for ozone are small on a global scale, but regionally differences are as large as 3DU in the tropospheric column and as large as 5 ppbv in the surface concentrations. Our results demonstrate that a careful integration of isoprene emissions and chemistry in CTMs is very important for simulating the budgets of a number of atmospheric trace gases. We further demonstrate that the model tagging scheme has the capability of improving conventional methods of constraining isoprene emissions from space-borne HCHO column observations, especially in regions where a considerable part of the variability in the HCHO column is not related to isoprene.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>113</s2>
</fA05>
<fA06>
<s2>D5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PFISTER (G. G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EMMONS (L. K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HESS (P. G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LAMARQUE (J.-F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ORLANDO (J. J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WALTERS (S.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GUENTHER (A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>PALMER (P. I.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>LAWRENCE (P. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of GeoSciences, University of Edinburgh</s1>
<s2>Edinburgh</s2>
<s3>GBR</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s2>D05308.1-D05308.21</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000183022170370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0208587</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] We present a study of the sensitivity of isoprene emission calculations in a global chemistry transport model (CTM) to input land cover characteristics and analyze the impacts of changes in isoprene on the tropospheric budgets of atmospheric key species. The CTM Model for Ozone and Related Chemical Species, version 4 (MOZART-4) includes the online calculation of isoprene emissions based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is driven by three different land parameter inputs. We also included a tagging scheme in the CTM, which keeps track of the production of carbon containing species from isoprene oxidation. It is found that the amount of tropospheric carbon monoxide (CO), formaldehyde (HCHO) and peroxyacetylnitrate (PAN) explained by isoprene oxidation ranges from 9-16%, 15-27%, and 22-32%, depending on the isoprene emissions scenario. Changes in the global tropospheric burden with different land cover inputs can reach up to 10% for CO, 15% for HCHO, and 20% for PAN. Changes for ozone are small on a global scale, but regionally differences are as large as 3DU in the tropospheric column and as large as 5 ppbv in the surface concentrations. Our results demonstrate that a careful integration of isoprene emissions and chemistry in CTMs is very important for simulating the budgets of a number of atmospheric trace gases. We further demonstrate that the model tagging scheme has the capability of improving conventional methods of constraining isoprene emissions from space-borne HCHO column observations, especially in regions where a considerable part of the variability in the HCHO column is not related to isoprene.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Isoprène</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Isoprene</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Isopreno</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>models</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>tracers</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Monde</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>global</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Transport</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>transport</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Occupation sol</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>land cover</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>ozone</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Gaz</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>gases</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Gas</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Aérosol</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>aerosols</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Aerosol</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Trajectoire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>trajectory</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Carbone</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>carbon</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Carbono</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Oxydation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>oxidation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Oxidación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Monoxyde carbone</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>carbon monoxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Monoxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Carbon monoxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Carbono monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Formaldéhyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Formaldehyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Formaldehído</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Peracétique acide nitrate</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Peroxyacetyl nitrate</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Pan</s0>
<s2>NO</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Pan</s0>
<s2>NO</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Pan</s0>
<s2>NO</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Echelle planétaire</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Planetary scale</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Escala planetaria</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Concentration</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>concentration</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Concentración</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé trace</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Trace compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto huella</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Variabilité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>variability</s0>
<s5>23</s5>
</fC03>
<fN21>
<s1>133</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0208587 INIST</NO>
<ET>Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4</ET>
<AU>PFISTER (G. G.); EMMONS (L. K.); HESS (P. G.); LAMARQUE (J.-F.); ORLANDO (J. J.); WALTERS (S.); GUENTHER (A.); PALMER (P. I.); LAWRENCE (P. J.)</AU>
<AF>National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut.); School of GeoSciences, University of Edinburgh/Edinburgh/Royaume-Uni (8 aut.); Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado/Boulder, Colorado/Etats-Unis (9 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2008; Vol. 113; No. D5; D05308.1-D05308.21; Bibl. 1 p.1/2</SO>
<LA>Anglais</LA>
<EA>[1] We present a study of the sensitivity of isoprene emission calculations in a global chemistry transport model (CTM) to input land cover characteristics and analyze the impacts of changes in isoprene on the tropospheric budgets of atmospheric key species. The CTM Model for Ozone and Related Chemical Species, version 4 (MOZART-4) includes the online calculation of isoprene emissions based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is driven by three different land parameter inputs. We also included a tagging scheme in the CTM, which keeps track of the production of carbon containing species from isoprene oxidation. It is found that the amount of tropospheric carbon monoxide (CO), formaldehyde (HCHO) and peroxyacetylnitrate (PAN) explained by isoprene oxidation ranges from 9-16%, 15-27%, and 22-32%, depending on the isoprene emissions scenario. Changes in the global tropospheric burden with different land cover inputs can reach up to 10% for CO, 15% for HCHO, and 20% for PAN. Changes for ozone are small on a global scale, but regionally differences are as large as 3DU in the tropospheric column and as large as 5 ppbv in the surface concentrations. Our results demonstrate that a careful integration of isoprene emissions and chemistry in CTMs is very important for simulating the budgets of a number of atmospheric trace gases. We further demonstrate that the model tagging scheme has the capability of improving conventional methods of constraining isoprene emissions from space-borne HCHO column observations, especially in regions where a considerable part of the variability in the HCHO column is not related to isoprene.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Isoprène; Modèle; Traceur; Analyse sensibilité; Monde; Transport; Occupation sol; Troposphère; Ozone; Gaz; Aérosol; Trajectoire; Carbone; Oxydation; Monoxyde carbone; Monoxyde de carbone; Formaldéhyde; Peracétique acide nitrate; Pan; Echelle planétaire; Concentration; Composé trace; Variabilité</FD>
<ED>Isoprene; models; tracers; sensitivity analysis; global; transport; land cover; troposphere; ozone; gases; aerosols; trajectory; carbon; oxidation; carbon monoxide; Carbon monoxide; Formaldehyde; Peroxyacetyl nitrate; Pan; Planetary scale; concentration; Trace compound; variability</ED>
<SD>Isopreno; Modelo; Trazador; Mundo; Transporte; Ozono; Gas; Aerosol; Carbono; Oxidación; Carbono monóxido; Formaldehído; Pan; Escala planetaria; Concentración; Compuesto huella</SD>
<LO>INIST-3144.354000183022170370</LO>
<ID>08-0208587</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000112 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000112 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0208587
   |texte=   Contribution of isoprene to chemical budgets : A model tracer study with the NCAR CTM MOZART-4
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023